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Abstract—Heart failure (HF) poses critical global health 
challenges, emphasizing the need for robust predictive models to 
support early diagnosis and enhance patient outcomes. 
Traditional machine learning (ML) models, such as Logistic 
Regression (LR), Support Vector Machines (SVM), Random 
Forests (RF), Gradient Boosting Machines (GBM), and Extreme 
Gradient Boosting Machines (xGBM), have shown effectiveness 
but face limitations in handling nonlinear relationships, 
addressing class imbalances, and generalizing across datasets. 
Deep learning (DL) models, including Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), excel 
at identifying complex patterns but are hindered by computational 
requirements and limited interpretability, restricting clinical 
adoption. This research evaluates predictive models using nine 
datasets ranging from 299 to 400,000 records. Synthetic Minority 
Over-sampling Technique (SMOTE) was applied to address class 
imbalances, while a Stacking Generative AI (GenAI) model was 
developed. This hybrid model integrates Generative AI with RF, 
GBM, and CNNs, enhancing underrepresented subgroup 
representation through synthetic data generation. The Stacking 
Generative AI model demonstrated superior performance, 
achieving 98% accuracy and a Receiver Operating Characteristic 
Area Under the Curve (ROC AUC) of 0.999 on a 1,025-record 
dataset. These results highlight the model’s ability to handle 
complex data, enhance predictive accuracy, and improve clinical 
relevance. A web application further illustrates its practical value, 
offering an accessible platform for HF risk assessment. This study 
underscores the innovative role of hybrid models in advancing 
healthcare decision-making and improving patient care. 

Keywords—machine learning, deep learning, neural networks, 
stacking models, generative AI. 

I. INTRODUCTION 
Heart failure (HF) is a significant public health issue due to 

its high morbidity and mortality rates, requiring early detection 
for improved patient outcomes and reduced healthcare burdens. 
Predictive models play a critical role in enabling timely and 
informed decision-making (Davis & Smith, 2023) [1]. ML and 
DL techniques have shown substantial promise in healthcare, 
particularly for predictive tasks (Breiman, 2001) [2], (LeCun et 
al., 2015) [3]. 

Traditional ML models, such as LR, RF, GBM, and xGBM, 
have demonstrated success in predictive applications. 
However, their inability to capture nonlinear and temporal 
complexities in healthcare data limits their performance. In 
contrast, neural networks like CNNs and RNNs excel at 
identifying intricate patterns but face challenges in 
computational efficiency and interpretability, making them less 
ideal for clinical use (LeCun et al., 2015) [3] and (Cho et al., 
2014) [4]. 

Hybrid stacking models offer a solution by combining the 
strengths of multiple algorithms to improve accuracy and 
generalizability. These models use a meta-learner to integrate 
predictions from base models, enhancing performance (Sagi & 
Rokach, 2018) [5]. This study introduces a Stacking Generative 
AI (Gen AI) model, which integrates GANs, RF, GBM, xGBM, 
and CNNs for HF prediction (Goodfellow et al., 2014) [6]. 
GANs address the challenge of class imbalances by generating 
synthetic data, which improves model performance on datasets 
with underrepresented minority cases (Frid-Adar et al., 2018) 
[7] and (Yi et al., 2019) [8]. 

This research evaluates traditional ML models, DL models, 
standalone Generative AI, and the proposed Stacking 
Generative AI model across nine datasets. Key questions 
include: (1) How do ML models compare to DL models like 
CNN and RNN? (2) What are the most influential predictors of 
HF? (3) Can a hybrid stacking model combining ML, DL, and 
GANs outperform single models? (4) How does incorporating 
Generative AI improve model performance? (5) What 
contributions can the Stacking Generative AI model make to 
HF prediction? 

Initial findings indicate that the hybrid approach 
consistently outperforms standalone models. On smaller 
datasets of 1,000 and 1,025 records, the model achieved 98% 
accuracy and a ROC AUC of 0.999, effectively addressing class 
imbalance and capturing complex data patterns. By integrating 
advanced AI techniques, this research demonstrates the 
potential of hybrid models to enhance HF prediction and 
support personalized care. 



Finally, this study explores the limitations of synthetic data, 
such as biases that affect model generalizability. By evaluating 
the Stacking Generative AI model on nine datasets, including 
the Framingham dataset of 4,240 records, it investigates biases, 
performance variability, and real-world applicability. 

II. LITERATURE REVIEW 

A. Traditional ML Approaches in HF Prediction 
Traditional ML models like RF, GBM, xGBM, and LR have 

been widely used in HF prediction due to their robust 
performance, but they often struggle with nonlinear 
relationships, class imbalances, and high-dimensional data. 
Chicco and Jurman (2020) [9] identified RF as a top performer 
in HF survival prediction with 74% accuracy and an ROC AUC 
of 0.80, though its limited dataset restricted generalizability. 
Singh et al. (2024) [10] achieved a 95.3% accuracy and a 0.97 
ROC AUC by training a DNN on 5,888 records with advanced 
preprocessing techniques, but data complexity remained a 
challenge. 

Optimization methods like Bayesian tuning and genetic 
algorithms have enhanced ML models, as shown by Rimal et 
al. (2024) [11], who reported 89% accuracy with RF. Ensemble 
approaches further improved performance; Hasan and Saleh 
(2021) [12] applied stacking to the Framingham dataset (4,239 
records), achieving a 96.69% accuracy and 0.98 ROC AUC. 
However, these models did not integrate DL or Generative AI 
techniques, limiting scalability. The proposed Stacking 
Generative AI model addresses these limitations by 
incorporating synthetic data to tackle class imbalance and 
improve performance, achieving a 96% accuracy and a 0.99 
ROC AUC. 

B. Neural Network-Based Approaches 
DL models have advanced HF prediction by capturing 

complex data patterns missed by traditional ML models. 
Mahmud et al. (2023) [13] introduced a lightweight metamodel 
combining ML algorithms, achieving 87% accuracy on 920 
records. While efficient, it lacked the sophistication of advanced 
DL models. RNNs, particularly with Gated Recurrent Units  
(GRUs), have shown promise in temporal modeling; Choi et al. 
(2017) [14] achieved a ROC AUC of 0.883 using RNNs on EHR 
data. However, the absence of hybrid strategies limited broader 
applicability. 

CNNs have also proven effective. Arooj et al. (2022) [15] 
achieved 91.7% accuracy on a 1,050-record dataset using a 
DCNN, though the lack of generalizability across datasets 
remained a limitation. Emerging approaches like transformers 
have demonstrated potential in HF prediction. Sakthi et al. 
(2024) [16] achieved 88.6% accuracy using transformers to 
identify heart anomalies, while Tuli et al. (2020) [17] proposed 
HealthFog, an IoT-based framework integrating ensemble DL 
with fog computing, achieving a 91.2% accuracy and 0.94 ROC 
AUC. Despite scalability, reliance on device resources hindered 
broader clinical adoption. 

C. Hybrid and Stacking Models in HF Prediction 
Hybrid models leverage the strengths of multiple algorithms 

to improve accuracy and generalizability. Ali et al. (2020) [18] 
combined wearable sensor data with EMRs in a DL-based 

system, achieving a 98.5% accuracy, though the exclusive 
reliance on DL limited robustness. Mienye et al. (2020) [19] 
achieved 93% accuracy with ensemble ML models but excluded 
DL methods, restricting the ability to capture complex data 
patterns. 

Wankhede et al. (2022) [20] integrated DL with the Tunicate 
Swarm Algorithm, achieving 97.5% accuracy on the Cleveland 
dataset, though its small size and lack of ML integration 
hindered scalability. Liu et al. (2022) [21] utilized stacking with 
multiple classifiers, reporting ROC AUCs of 0.95 and 0.92 
across two datasets. However, the absence of Generative AI 
techniques limited the ability to address class imbalance. 

D. Generative AI and GAN Frameworks in HF Prediction 
GANs have emerged as effective tools for addressing class 

imbalance and data complexity in HF prediction. Khan et al. 
(2024) [22] [23] combined ML and DL with GANs to generate 
synthetic data, achieving 96.1% accuracy and a 0.927 ROC 
AUC. Anbarasu and Suruli (2022) [24] introduced a deep 
ensemble learning model combined with GAN-based semi-
supervised training, achieving accuracies of 86.54%, 84.83%, 
and 86.72% on the SPECT, WDBC, and Hallmarks datasets, 
respectively. Their approach used GANs to generate synthetic 
data and integrate multiple classifiers with a deep neural 
network. 

Yu et al. (2024) [25] proposed a GAN framework with a 
feature-enhanced loss function, achieving 94.62% accuracy and 
a 0.958 ROC AUC on the KORA cohort dataset. Similarly, 
Bhagawati and Paul (2024) [26] achieved 93% accuracy and a 
0.953 ROC AUC for coronary artery disease prediction using 
GANs. 

The proposed Stacking Generative AI model builds on these 
advancements by synthesizing balanced datasets to improve 
minority class predictions. Its superior performance, achieving 
95% accuracy and a 99% ROC AUC across nine datasets, 
demonstrates the potential of hybrid models in addressing data 
imbalance and advancing HF prediction. 

III. METHODOLOGY 

A. Stacking Generative AI Models 
The Stacking Generative AI model integrates traditional ML 

models (RF, GBM, xGBM) with DL architectures (CNNs, 
RNNs) and GAN-generated synthetic data to address class 
imbalance and enhance predictive accuracy. This proposed 
hybrid framework adapts to dataset sizes, leveraging ML for 
smaller datasets and DL for larger, complex datasets. As a result, 
the model achieved a 98% accuracy and a 99.9% ROC AUC on 
a 1,025-record dataset and 96% accuracy with a 0.99 ROC AUC 
on a 400,000-record dataset. 

B. Overview of Methodology 
The methodology involved preprocessing nine HF datasets 

(299 to 400,000 records) with techniques like data cleaning, 
normalization (Z-score), and SMOTE for class balancing. 
GANs further improved data robustness and generalizability by 
generating high-quality synthetic samples. Hyperparameter 
optimization using Grid Search Cross-Validation refined model 
performance. Evaluation metrics included accuracy, ROC AUC, 



precision, recall, and F1-scores, consistently showing superior 
results for the Stacking Generative AI model. 

C. Data Collection and Preprocessing 
Nine diverse datasets ensured the robustness and scalability 

of the model: 

1) 299-Record Dataset (Pakistan): Collected at the 
Faisalabad Institute of Cardiology, this dataset includes 
patients aged 40-95 years, focusing on clinical measures 
like ejection fraction and serum creatinine. 

2) 303-Record Dataset (Cleveland, USA): Derived from 
the UCI repository, it captures key attributes like chest 
pain type and serum cholesterol. 

3) 1,000-Record Dataset (India): Features clinical 
parameters like blood pressure and fasting blood sugar. 

4) 1,025-Record Dataset (Global): A curated combination 
from Cleveland, Hungary, Switzerland, and Long Beach 
VA, focusing on features like exercise-induced angina. 

5) 1,190-Record Dataset (Global): Combines datasets 
from Cleveland, Hungary, and other locations, 
emphasizing 11 clinical features. 

6) 4,240-Record Dataset (Framingham, USA): A key focus 
due to its clinically relevant features (e.g., cholesterol, 
glucose) and imbalanced class distributions, mitigated 
by SMOTE and GANs. 

7) 11,627-Record Dataset (USA): Longitudinal data from 
the Framingham Heart Study covering cardiovascular 
risk factors. 

8) 70,000-Record Dataset (Russia): Focuses on 
cardiovascular disease indicators like alcohol intake and 
smoking. 

9) 400,000-Record Dataset (USA): Derived from the CDC 
BRFSS dataset, encompassing diverse features like 
physical activity levels and diabetes status. 

These datasets provided a solid foundation for assessing 
generalizability and scalability across varying complexities. 

D. Research Questions and Findings 
Key research questions and findings include: 

1) How do traditional ML models compared to neural 
network-based models in terms of accuracy and ROC 
AUC for heart failure prediction? 

ML models like RF achieved 83% accuracy and 0.91 ROC 
AUC on nonlinear datasets but struggled with high-dimensional 
data. While DL models, such as CNNs and RNNs, excelled in 
pattern recognition, achieving a 0.85 ROC AUC but incurred 
higher computational costs. 

2) What are the most influential predictors of heart failure 
across different datasets? Key predictors include:  
• Large Datasets (400,000, 70,000, and 11,627 

records): Age, BMI, systolic and diastolic blood 
pressure, and cholesterol. 

• Medium-Sized Datasets (4,240 records): Age, 
sysBP, cholesterol, and glucose. 

• Small Datasets (303, 1,000, and 1,025 records): 
Symptom-specific features like chest pain (cp). 

3) Can a hybrid stacking model that combines traditional 
ML and DL techniques provide superior predictive 
performance compared to single models? 

The hybrid stacking model combining RF, GBM, CNN, and 
RNN achieved 82% accuracy and 0.90 ROC AUC on small 
datasets and 90% accuracy with 0.97 ROC AUC on medium 
datasets. 

4) How does the use of Generative AI, particularly GANs, 
in a stacking model improve performance compared to 
standalone models? Does it enhance generalizability 
and scalability across diverse healthcare settings? 

GANs enhanced class balancing and improved ROC AUC 
from 0.83 (SMOTE) to 0.95 on the 4,240-record dataset. 

5) How does the unique Stacking Generative AI model 
specifically contribute to advancements in the 
healthcare industry, particularly in predicting and 
managing heart failure? 
a) Improved accuracy, class balance, and generalizability. 
b) Enhanced clinical utility with personalized predictions 

and early intervention capabilities.  

E. Core Techniques and Optimization Strategies 
1) Synthetic Minority Over-Sampling Technique (SMOTE) 

Addressed class imbalance by interpolating new data points 
for minority classes. On a 1,000-record dataset, SMOTE-
enhanced models achieved a 0.95 ROC AUC. 

2) Grid Search Cross-Validation (Grid Search CV) 
Optimized hyperparameters like RF’s n_estimators (30) and 

max_depth (3) to improve model accuracy and AUC. 

3) Generative Adversarial Networks (GANs) 
GANs generated synthetic samples by training a generator to 

create realistic data and a discriminator to validate its quality. 
This dual-network structure enhanced robustness and 
generalization in HF prediction. 

Complementary Role of SMOTE and GANs 

While SMOTE generates synthetic samples efficiently for 
traditional ML models, GANs produce realistic, high-quality 
data for complex, imbalanced datasets. Together with Grid 
Search Cross Validation (CV), these techniques enhance the 
model’s performance, achieving superior accuracy and recall 
(Chawla et al., 2002) [27] and (Goodfellow et al., 2014) [6]. 

F. Model Design and Implementation (Figure 2) 
The Stacking Generative AI model combines traditional ML 

techniques, DL architectures, and synthetic data generated by 
Generative Adversarial Networks (GANs) to enhance heart 
failure prediction. Data preparation included cleaning, 
imputation using K-Nearest Neighbors (KNN) for numerical 
features and mode imputation for categorical features, and 
normalization through standard scaling to improve model 
convergence.  

The GAN framework (Figure 1) integrates a generator and 
discriminator network. The generator, a feedforward neural 



network, uses a latent space vector sampled from a Gaussian 
distribution to generate synthetic data. Its hidden layers are 
activated by ReLU, and the output layer utilizes Tanh to align 
synthetic data with normalized feature ranges. The 
discriminator, a binary classifier, includes hidden layers with 
LeakyReLU activation and a Sigmoid-activated output layer to 
distinguish between real and synthetic data. Both networks are 
trained using the Binary Cross-Entropy (BCE) loss function and 
the Adam optimizer at a learning rate of 0.00005. 

 
Figure 1 - Architecture of the GAN network 

During GAN training, the generator aims to create synthetic 
samples that the discriminator misclassifies as real. The training 
process alternates updates between the two networks, using 
techniques like batch normalization, noise injection, and dropout 
to stabilize training and prevent mode collapse. The generated 
synthetic records are inverse-transformed to match the original 
feature space and validated by the discriminator for quality 
before integration into downstream tasks. 

The stacking model incorporates base models, including RF, 
xGBM, and CNNs. RF uses 100 trees and a maximum depth of 
10, while xGBM employs 200 estimators and a learning rate of 
0.05. The CNN architecture features Conv1D layers with 
MaxPooling and Dropout to prevent overfitting. Logistic 
Regression serves as the meta-learner, combining predictions 
from the base models. Its regularization parameter (C = 0.01) 
was fine-tuned to optimize the balance between bias and 
variance, ensuring robust final predictions. 

G. Evaluation Measurement and Validation 
The Stacking Generative AI model underwent 

comprehensive evaluation to ensure robustness, 
generalizability, and real-world applicability. Statistical 

validation and cross-validation techniques assessed its 
performance across diverse datasets. 

Statistical validation included ANOVA analysis, revealing a 
significant improvement in performance (p < 2.26e-276), 
demonstrating the efficacy of GAN-generated data in addressing 
class imbalance. Mixed-effects modeling, as outlined by Javadi 
et al. (2024) [28], accounted for variability across datasets, such 
as demographic differences between populations in Pakistan and 

the United States. Bias analysis showed potential overfitting in 
synthetic subsets, emphasizing the need for balancing real and 
synthetic data. 

Cross-validation ensured model consistency and reliability. 
Using K-fold methods, including 5- and 10-fold cross-
validation, the model achieved a mean accuracy of 99.4%. 
Learning curves identified areas of overfitting or underfitting 
during training and validation. Hyperparameter tuning through 
grid search optimized model parameters, such as the RF model’s 

Figure 2 - Architecture of the Stacking Generative AI model 



30 estimators and maximum depth of 3, and the meta-learner’s 
regularization strength (C = 0.01), further improving accuracy. 

Comprehensive validation minimized overfitting and 
ensured generalization. Metrics such as sensitivity, specificity, 
and ROC AUC consistently demonstrated the model's ability to 
balance false positives and negatives. This rigorous evaluation 
confirms the Stacking Generative AI model’s suitability for real-
world deployment in heart failure prediction, offering high 
reliability and adaptability across diverse clinical scenarios. 

The proposed Stacking Generative AI model underwent 
rigorous evaluation to ensure its robustness, generalizability, 
and reliability in real-world applications. Statistical validation 
and cross-validation techniques were employed to measure the 
model's performance across various datasets. 

IV. RESULTS 

A. Performance Comparison between Traditional Models and 
Neural Network Models: How do traditional ML models 
compare to neural network-based models in terms of 
accuracy and ROC AUC for heart failure prediction? 
The study compared traditional ML models, including LR, 

SVM, RF, GBM, and xGBM, with neural network models like 
CNN and GRU-based models for predicting heart failure. The 
performance metrics evaluated included accuracy and ROC 
AUC across datasets of varying sizes. 

1) Performance on Small and Medium Datasets 
On smaller datasets (e.g., 303 records), RF performed best 

with 83% accuracy and a 0.91 ROC AUC, surpassing GBM 
(79% accuracy, 0.87 ROC AUC) and xGBM (80% accuracy, 
0.86 ROC AUC). CNNs delivered comparable results with 82% 
accuracy and 0.85 ROC AUC. As dataset sizes increased to 
1,000 and 1,025 records, RF and xGBM maintained strong 
results, achieving up to 93% accuracy and 0.98 ROC AUC. 
CNN’s performance slightly declined (79% accuracy, 0.85 ROC 
AUC), while GRU-based models showed robust results with 
84% accuracy and 0.92 ROC AUC, (Table 1). 

 
Table 1 - Small dataset’s performances on ML and DL models 

2) Performance on Large Datasets 
Neural networks, particularly CNNs, excelled at handling 

large datasets. On a 400,000-record dataset, CNN achieved 78% 
accuracy and 0.86 ROC AUC, outperforming GBM (77% 
accuracy, 0.85 ROC AUC). RF delivered strong results with 
90% accuracy and 0.96 ROC AUC, (Table 2). 

 
Table 2 - Large dataset’s performances on ML and DL models 

3) Comparative Analysis with Related Studies 
Compared to prior research, such as Dumlao, J. (n.d.) [29], 

where RF achieved 94% accuracy, the Stacking Generative AI 
model demonstrated superior results on large datasets, achieving 
96% accuracy and 0.99 ROC AUC. Similarly, when 
benchmarked against Khan, H. et al. (2024) [22], whose models 
(EnsCVDD-Net and BlCVDD-Net) reported accuracies of 88% 
and 91%, and ROC AUCs of 0.88 and 0.91, the Stacking 
Generative AI model consistently outperformed, highlighting its 
robustness and precision in predicting heart failure, (Table 3). 

 
Table 3 - Large dataset's performances vs. another research 

B. What are the most influential predictors of heart failure 
across different datasets, and how do they affect overall 
model performance? 
Identifying key predictors enhances the accuracy and 

interpretability of heart failure models. Using RF’s feature 
importance analysis, the study identified critical variables across 
datasets of different sizes: 

1) Predictors in Large Datasets (Figure 3 and 4) 
 

 
Figure 3 - Influential Predictors – dataset of 70,000 records 

 
Figure 4 - Influential Predictors – dataset of 400,000 records 



In the 70,000-record dataset, key predictors included age, 
systolic blood pressure (ap_hi), diastolic blood pressure (ap_lo), 
and cholesterol, contributing to 74% accuracy and a 0.81 ROC 
AUC. The 400,000-record dataset highlighted, BMI, angina, and 
age as top features, with the Stacking Generative AI model 
achieving 96% accuracy and a 0.99 ROC AUC. 

2) Predictors in Medium-Sized Datasets (Figure 5) 
For the 4,240-record dataset, age, sysBP, and cholesterol 

were the strongest predictors, resulting in 92% accuracy and a 
0.96 ROC AUC. 

 
Figure 5 - Influential Predictors – dataset of 4,240 records 

3) Predictors in Small Datasets (Figure 6) 
In the 1,025-record dataset, chest pain (cp), oldpeak, and the 

number of major vessels (ca) were key predictors, achieving 
95% accuracy and a 0.999 ROC AUC. While 303-record dataset 
identified heart rate attained (thalachh), chest pain (cp), and the 
number of major vessels (caa) as critical features, resulting in 
95% accuracy and a 0.99 ROC AUC. For the 1,000-record 
dataset, the slope of the ST segment, chest pain (cp), and resting 
blood pressure were key contributors, yielding 98% accuracy 
and a 0.999 ROC AUC. 

 
Figure 6 - Influential Predictors – dataset of 1,025 records 

4) Key Insights and Implications 
 Blood pressure, chest pain, cholesterol levels, and age 
consistently emerged as the most critical predictors across 
datasets, aligning with established clinical risk factors for heart 
failure. These features improve the interpretability and clinical 
relevance of predictive models. By leveraging these predictors, 
the Stacking Generative AI model achieved superior accuracy 
and ROC AUC values, demonstrating the importance of 
systematic feature identification in advancing predictive 
healthcare. 

C. Can a hybrid stacking model that combines traditional ML 
and DL techniques provide superior predictive 
performance compared to single models? 
The study introduced a hybrid stacking model that combines 

traditional ML methods, such as RF and GBM, with advanced 
DL models like CNN and RNN. This approach leverages the 
strengths of ML and DL to improve predictive performance and 
scalability. 

1) Performance on Datasets of Varying Sizes 
On a small dataset (303 records), the hybrid stacking model 

achieved 82% accuracy and a ROC AUC of 0.90, outperforming 
standalone ML models like LR and SVM. The Stacking 
Generative AI model achieved a ROC AUC of 0.99, 
significantly exceeding RF (0.91) and SVM (0.86). 

On a medium dataset (4,240 records), the stacking model 
reached 90% accuracy and a ROC AUC of 0.97, outperforming 
standalone CNN and RNN models. This highlights the hybrid 
model’s ability to harness the strengths of both ML and DL 
techniques. 

On a large dataset (400,000 records), the hybrid stacking 
model achieved 90% accuracy and a ROC AUC of 0.96, 
outperforming standalone models like CNN (78% accuracy, 
ROC AUC 0.86) and GBM (77% accuracy, ROC AUC 0.85). 
This demonstrates the scalability and robustness of the hybrid 
model. 

2) Comparative Analysis with Existing Models 
Compared to alternative hybrid approaches like Decision 

Tree with AdaBoost by Sk K. B. et al. (2023) [30], which 
achieved 97.43% accuracy, the Stacking Generative AI model 
delivered competitive performance. On the Framingham dataset 
(4,240 records), the proposed model achieved 92% accuracy and 
a ROC AUC of 0.96, surpassing Mienye et al.[31]’s CART-
based ensemble (91% accuracy).  And with the smallest dataset 
(303 records), the proposed model’s ROC AUC of 0.99 
exceeded the range reported by Rimal et al. (2024) [10] (ROC 
AUC 0.85 to 0.95). 

The hybrid stacking model outperforms standalone ML and 
DL models in both accuracy and ROC AUC. Its consistent 
superiority across datasets underscores its potential to advance 
predictive analytics in healthcare. 

D. How does the use of Generative AI, particularly GANs, in 
a stacking model improve performance compared to 
standalone models? Does it enhance generalizability and 
scalability across diverse healthcare settings? 
Generative AI, particularly GANs, enhances predictive 

performance by addressing class imbalance through synthetic 
data generation. This improves model training, reduces bias, and 
enhances scalability across diverse healthcare datasets. 

1) Performance Improvements 
On a small dataset (303 records), the Stacking Generative AI 

model achieved 95% accuracy and a ROC AUC of 0.99, 
outperforming standalone models like RF (83% accuracy, ROC 
AUC 0.91). Additionally, on a large dataset (400,000 records), 
the Stacking Generative AI model achieved 96% accuracy and 



a ROC AUC of 0.99, significantly exceeding CNN’s 78% 
accuracy and ROC AUC of 0.86. This highlights the ability of 
GANs to improve performance even in large, complex datasets. 

2) Generalizability and Scalability 
The model maintained robust performance across datasets of 

varying sizes. On a 1,000-record dataset, it achieved 98% 
accuracy and a ROC AUC of 0.999, outperforming standalone 
CNN (79% accuracy) and RF (90% accuracy). 

3) Real-World Utility 
By addressing data imbalances and capturing intricate 

patterns, the Stacking Generative AI model supports scalable 
and predictive modeling. Its superior performance demonstrates 
its potential for advancing clinical decision-making and 
improving real-world healthcare outcomes. 

Generative AI, particularly GANs, plays an innovative role 
in predictive modeling by addressing key challenges like class 
imbalance and complex data patterns. 

E. How does the unique Stacking Generative AI model 
specifically contribute to advancements in the healthcare 
industry, particularly in predicting and managing heart 
failure? 
The Stacking Generative AI model significantly advances 

HF prediction and management in the healthcare sector. By 
integrating traditional ML models such as RF, GBM, and xGBM 
with neural network algorithms like CNNs and RNNs, along 
with GANs, this proposed model addresses critical challenges 
such as class imbalance, scalability, and predictive accuracy. 

1) Class Imbalance Resolution 
GANs augment minority class data, improving recall and 

F1-scores. On a 303-record dataset, the model achieved 95% 
accuracy and a ROC AUC of 0.99, outperforming RF (83% 
accuracy, ROC AUC 0.91) and CNN (82% accuracy, ROC 
AUC 0.85) (Table 4). 

2) Scalability and Robustness 
The model scales effectively across datasets. On a 400,000-

record dataset, it achieved 96% accuracy and a ROC AUC of 
0.99, demonstrating its reliability for large-scale clinical 
applications and diverse patient populations. 

3) Clinical Utility 
By estimating key predictors like systolic blood pressure, 

cholesterol, and glucose, the model aids in early detection, risk 
stratification, and personalized treatment planning. Its accuracy 
make it a valuable tool for clinicians, optimizing resources and 
improving patient outcomes. 

4) Summary of Proposed Model Contributions 
Combining predictive accuracy, scalability, and 

generalizability, the Stacking Generative AI model represents an 
innovative tool for HF prediction and management. It addresses 
challenges in healthcare data, advancing early detection and 
personalized care, and improving clinical decision-making 
(Table 4, Figure 7, 8). 

V. CONCLUSION 
This study highlights the effectiveness of the Stacking 

Generative AI model as an innovative hybrid solution for heart 
failure prediction. By integrating Generative AI with traditional 
machine learning models (RF, GBM, xGBM) and deep learning 
architectures (CNNs, RNNs), the model addresses key 
challenges in healthcare predictive modeling, including class 
imbalance, scalability, and predictive accuracy. Its ability to 
synthesize balanced datasets and adapt to varying complexities 
makes it a robust tool for clinical applications. 

A. Summary of Findings 
The Stacking Generative AI model consistently 

outperformed standalone ML and DL models across datasets of 
varying sizes, from 299 to 400,000 records. Notably, it achieved 
an outstanding ROC AUC of 0.999 on a 1,000-record dataset, 
surpassing standalone xGBM (0.94) and CNN (0.85). On the 

Table 4 - Results across 12 models with evaluation on 9 datasets ranging from 299 – 400,000 records. 



largest dataset of 400,000 records, it maintained performance 
with 96% accuracy and an ROC AUC of 0.99, demonstrating its 
scalability and applicability across clinical settings. 

The hybrid structure of the model leverages the strengths of 
ML and DL techniques. While ML models excel at structured 
data analysis, DL models identify complex patterns in data. The 
integration of GANs enhances the model’s ability to balance 
minority classes, improving recall and F1-scores—features that 
are critical for identifying high-risk cases in healthcare, where 
class imbalances are prevalent.  

 
Figure 7 - ROC AUC performance on dataset of 303 records 

B. Comparison with Existing Literature 
Compared to prior studies, the Stacking Generative AI 

model demonstrates clear advancements. Singh et al. (2024) [9] 
reported an ROC AUC of 0.89 using xGBM, while the proposed 
model achieved 0.99 on similar datasets. Similarly, the model 
outperformed RF-based approaches, such as those in Chicco et 
al. (2020) [8], which achieved an ROC AUC of 0.85. These 
comparisons affirm the utility of combining GANs with ML and 
DL techniques within a stacking framework, resulting in 
superior predictive accuracy and scalability. 

C. Clinical Implications 
The Stacking Generative AI model has significant potential 

for clinical implementation. Its ability to handle imbalanced 
datasets while delivering high predictive accuracy makes it a 
reliable decision-support tool for early diagnosis and 
personalized treatment planning. By identifying actionable 
predictors such as systolic blood pressure, BMI, cholesterol, and 
glucose levels, the model provides clinicians with valuable 
insights, enabling better resource allocation and improved 
patient care. 

The model’s adaptability across diverse datasets further 
underscores its utility. Its consistent performance across datasets 
of varying sizes, from 299 to 400,000 records, highlights its 
robustness and scalability. Although its complexity may reduce 
interpretability compared to simpler models like logistic 
regression, the trade-off is justified by its superior predictive 

power. 

 
Figure 8 - ROC AUC performance on dataset of 400,000 records 

D. Limitations and Future Research 
Despite its achievements, the model faces certain 

limitations. Discrepancies in the fidelity of GAN-generated data, 
particularly for binary and categorical variables, require further 
investigation. Future research will focus on improving GAN 
architectures, such as transformer-based GANs, to enhance the 
quality of synthetic data. Additionally, incorporating feature-
specific loss functions could align synthetic data more closely 
with original datasets, particularly for critical clinical variables. 
Expanding the validation of the model to include larger and 
more diverse datasets will further enhance its generalizability 
and clinical relevance. 

E. Conclusion 
The proposed Stacking Generative AI model represents a 

significant advancement in heart disease prediction. By 
combining ML, DL, and GANs, the model achieves accuracy, 
scalability, and generalizability, outperforming existing models 
in both existing literatures and real-world scenarios. The 
model’s application in healthcare systems has the potential to 
transform heart failure prediction and management by enabling 
early diagnosis, personalized care, and data-driven decision-
making. Furthermore, the study designed and developed a web 
application to demonstrates (https://cvdstack.streamlit.app) its 
practical utility, offering real-time risk assessment tools for 
clinicians and patients. By bridging the gap between academic 
research and clinical practice, this model paves the way for 
future advancements in predictive healthcare analytics. 

VI. DISCUSSION AND FUTURE WORKS 

A. Discussion 
This study assessed the Stacking Generative AI model's 

performance in heart failure prediction, focusing on 
computational efficiency, memory usage, and clinical 
integration. With an inference time of 0.0095 seconds per 
prediction and memory usage of 1278.99 MB, the model proved 
suitable for real-time applications. Cloud-based deployment was 



identified as a cost-effective solution for scalability. The model's 
integration into clinical workflows, such as EHRs, was 
emphasized, showcasing its ability to augment predictive 
systems while safeguarding patient privacy. 

The study analyzes the effectiveness of synthetic data 
generated by Generative Adversarial Networks (GANs) 
compared to the original 400,000-record dataset. The results 
show that synthetic data captures key patterns of the original 
data but introduces greater variability, which could improve 
model robustness while requiring GAN refinement for better 
alignment. 

Comparison Between GAN-Generated Synthetic Data and 
Original Data 

The synthetic data largely replicates and covers the original 
data, as evidenced by the significant overlap, similar patterns, 
and comprehensive coverage in the PCA scatter plot (Figure 9). 
However, there is a broader spread in some synthetic data points, 
indicating increased variability, which suggests a need to adjust 
GAN hyperparameters for a closer match to the original 
distribution. 

 
Figure 9 - PCA Visualization of Original vs. Synthetic Data for the 

400,000-Record Dataset 

Evaluation Metrics Across Combined, Original, and 
Synthetic Datasets 

Model performance varies across datasets. The original 
dataset shows high precision for the majority class (0.98) but 
lower performance for the minority class (precision: 0.21, recall: 
0.63), with a ROC AUC of 0.8421. The synthetic dataset yields 
perfect metrics, while the combined dataset (real + synthetic) 
offers balanced results (precision and recall ~0.86–0.87, ROC 
AUC: 0.9385), highlighting synthetic data’s potential and 
limitations. 

Future efforts should refine GAN parameters to improve 
synthetic data quality and compare alternatives like SMOTE or 
ADASYN – Adaptive Synthetic Sampling. 

Performance Variability Across Datasets 

Model performance varied across datasets due to differences 
in size, class distribution, and feature diversity. Smaller datasets 
(e.g., 299 and 303 records) exhibited high sensitivity (≥0.97) but 
lower specificity (0.65–0.78), reflecting a focus on detecting 
heart failure cases. Larger datasets (e.g., 11,627 and 400,000 

records) showed balanced sensitivity (0.83–0.95) and specificity 
(0.97–0.99), demonstrating improved generalization. The 
70,000-record dataset's lower sensitivity (0.67) and F1-score 
(0.74) highlighted challenges with class imbalance and noise. 
Advanced resampling techniques and hyperparameter 
optimization are recommended to address these issues. 

 

Dataset 
(Records) 

Sensitivity 
(Recall for 

Class 1) 

Specificity 
(Recall for 

Class 0) 

F1 Score 
(Macro 
Avg) 

ROC 
AUC 

299 0.97 0.78 0.88 0.98 
303 0.99 0.65 0.86 0.99 

1,000 0.99 0.95 0.97 1.00 
1,025 1.00 0.92 0.97 1.00 
1,190 0.99 0.96 0.97 1.00 
4,240 0.88 0.97 0.92 0.96 

11,627 0.83 0.99 0.91 0.95 
70,000 0.67 0.81 0.74 0.81 

400,000 0.95 0.97 0.96 0.99 

 Table 5 – Performance Metrics (Sensitivity, Specificity, and F1-
Score) for Stacking Gen AI Model Across Datasets  

B. Future Works 
Future research will address the limitations and explore 

avenues for enhancing the model's performance and 
applicability: 

1) Evaluation on External Datasets: To improve 
generalizability, future studies will include datasets from 
diverse demographics, including underrepresented 
populations from Africa, South America, and East Asia. 
Subgroup analyses will identify potential biases and 
ensure equitable model performance. 

2) Exploring Advanced Models: Transformer-based 
architectures and reinforcement learning will be 
incorporated to improve sequential tasks and 
predictions. Integration of large language models with 
EHRs could further enhance predictive accuracy. 

3) Expanding Applications: Adapting the model for other 
medical conditions, such as diabetes and chronic kidney 
disease, will demonstrate broader utility in healthcare. 

4) Enhancing Interpretability: Developing counterfactual 
explanations and visualization tools will improve 
clinical usability, ensuring the model's predictions are 
interpretable and actionable. 

5) Real-World Validation: Clinical trials will refine the 
model based on healthcare practitioners' feedback, 
focusing on usability and practical challenges. 

6) Improving Efficiency: Techniques like model pruning, 
quantization, and edge computing will optimize 
performance for resource-constrained environments. 

 

The web/mobile application developed for this study 
(accessible at [https://cvdstack.streamlit.app/]) demonstrates 
practical deployment potential. The application allows clinicians 
and patients to input clinical data, such as age, cholesterol, and 
blood pressure, to obtain real-time heart failure risk predictions. 



Future usability testing will evaluate task completion times, user 
satisfaction, and scalability under high workloads, refining the 
interface for clinical integration. 

C. Ethical Considerations 
The use of GAN-generated synthetic data raises ethical 

concerns. While synthetic data mitigates class imbalance and 
preserves patient privacy, it may propagate biases from the 
original dataset, particularly for underrepresented groups. 
Fairness testing and privacy-preserving techniques, such as 
differential privacy, will ensure ethical standards in data 
generation and model predictions. 

D. Summary 
The proposed Stacking Generative AI model combines 

machine learning, deep learning, and GANs to improve heart 
failure prediction. It tackles class imbalance, scalability, and 
accuracy, benefiting hospitals, doctors, and patients. Hospitals 
optimize resources and preventive care, doctors gain tailored 
insights, and patients see earlier interventions, cutting 
readmissions. Visualizations like ROC curves (AUC up to 0.99) 
and PCA plots show strong model performance and synthetic 
data utility. Future efforts will enhance GANs, broaden 
healthcare applications, and validate via clinical trials. 
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